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Abstract
Successful drug discovery requires knowledge and experience across many disciplines 
and no current ‘artificial intelligence’ method can replace expert scientists. However, 
computers can recall much more information than any individual or team and facilitate 
transfer of knowledge across disciplines. We’ll discuss how knowledge relating to 
chemistry and the biological and physicochemical properties required for a successful 
compound can be captured. Furthermore, we’ll illustrate how, by combining and applying 
this knowledge computationally, a much broader range of optimisation strategies can 
be rigorously explored, and the results presented in an intuitive way for consideration 
by the experts.

Introduction
Drug discovery is a knowledge-driven process. Its success depends on leveraging the knowledge of 
a multidisciplinary team of scientists, covering fields such as medicinal chemistry, pharmacology, drug 
metabolism and pharmacokinetics, and toxicology. 

Each discipline brings a different viewpoint on the direction of a project. The transfer of this knowledge 
between scientists is key to balancing the many requirements of an optimal drug candidate; not only 
activity against therapeutic target(s), but appropriate absorption, distribution, metabolism and excretion 
(ADMET), selectivity over off-targets and avoiding non-specific toxicity. Focussing on compounds with a 
good balance of properties, early in a project, helps to reduce the time taken in lead optimisation and 
improves the chance of success [1].

Nevertheless, even within our own field, our experience is limited, and our memories are finite. There is 
a wide corpus of knowledge available outside of our immediate experience and drawing upon this can 
suggest new optimisation strategies, highlight potential risks that we may not be aware of or identify 
additional experiments that would provide valuable information on which to base decisions.

Many databases are available that capture data on a wide range of chemistry and biological targets. These 
include public domain sources, such as ChEMBL [2,3], PubChem [4] and the Protein Data Bank (PDB) [5]; 
and commercial platforms such as SciFinder [6] and Reaxys [7]. Careful searches of these databases can 
reveal a wealth of valuable information for drug discovery.
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To gain the most from these data sources, however, requires a user to know how best to construct a search 
to unearth the most relevant data and analyse the results to extract the knowledge these data reveal. This 
process is also limited by the speed with which we can compose, run and analyse the results of a search.

For this reason, computational methods that can draw on these databases, analyse the underlying data and 
apply the resulting knowledge automatically can provide a huge advantage. Systematic analysis of the raw 
data, at scale, can extract patterns and trends that, in turn, can be applied much faster than a ‘manual’ process.

Computational methods are also unbiased in their application of knowledge, sometimes revealing 
examples that do not agree with our intuition and can help to explore ‘outside the box’. Like all people, 
scientists suffer from well established ‘cognitive biases’ that can subconsciously influence the decisions 
we make [8], leading to missed opportunities or wasted effort. For example, ‘confirmation bias’ leads us 
to search for data that confirm our hypotheses and neglect those that do not conform, inappropriately 
limiting the search before choosing a lead series or candidate.

New computational methods for capturing and sharing knowledge can supplement the hard-earned 
experience of teams to guide the direction of research and the optimisation of compounds. This 
combination of speed and objectivity enables a more rigorous exploration of potential options, subject to 
a scientific team’s strategic oversight of a project. 

In this paper, we will review methods for capturing and applying knowledge in chemistry, structure-activity 
relationships (SAR) and the therapeutic objectives of a drug discovery project. We will also present an 
example illustrating an application to generate new compound ideas for potent, selective compounds with 
good physicochemical properties.

Capturing and Applying Knowledge
Chemistry
From a chemistry perspective, the knowledge that comes with experience provides insight about what 
compounds we may be able to synthesise and how this could be achieved.

For example, a database of chemical building blocks, whether in-house or from a commercial supplier, can 
provide input to enumerate a virtual library of compounds and explore hypotheses for optimisation. While 
limiting the design scope based on availability of building blocks may offer short-term benefits, other 
approaches to compound design can offer a broader search of potential optimisation strategies that may 
be outside of an individual chemist’s, or even a project team’s, experience, leading to greater potential for 
long-term success for the project.

One such approach is based on generating new, relevant compound structures that can be generated 
by applying structural transformations to existing compounds of interest [9,10]. These transformations 
represent optimisation steps that have been previously applied in chemistry projects and may be 
more general than a single reaction step, enabling a broader exploration of chemical space. Simple 
transformations can be generated by matched molecular pair analysis (MMPA) [11] of existing compound 
collections, while larger transformations may be curated in databases such as BIOSTER [12] from practical 
examples published in the chemistry literature.

A recent development in ‘artificial intelligence’ (AI) methods has resulted in approaches that learn what 
a drug molecule ‘looks like’ from large databases of compounds that have been considered in medicinal 
chemistry projects. These ‘generative adversarial networks’, such as ORGANIC [13] and RANC [14] can 
propose new structures for consideration.  These approaches are new and anecdotal evidence suggests 
that many of the structures generated may not be ‘desirable’ from a medicinal chemistry perspective, but 
the field is developing quickly, and this is likely to improve.
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Whenever proposing novel compounds, the first question is whether they are likely to be synthetically 
tractable and, if so, what routes might be considered. Synthetic tractability is quite subjective and chemists’ 
opinions and the routes they propose will depend on the reaction schemes with which they are most 
familiar. This, itself, is a form of cognitive bias, known as familiarity bias. However, computational methods 
can also capture chemistry knowledge about reactions from the broad corpus of chemistry literature or 
from electronic laboratory notebooks and propose synthetic routes for consideration [15]. Expert systems, 
such as ICSYNTH [16,17] and ChemPlanner [18], apply reaction rules to perform a retrosynthetic analysis 
of a query compound, rank multiple potential synthetic routes and provide references to support the 
pathways proposed. Here, again, developments in AI may also play a role to ‘learn’ from reaction data to 
predict synthetic routes for novel compounds [19].

Other approaches to propose novel compound suggestions combine the generation of the structure with a 
potential synthetic route. Software such as DOGS (Design of Genuine Structures) [20] work by exploring a 
space of available reagents and reactions and then combining the reagents in multiple steps to generate new 
compounds. This approach limits the space of ideas that can be searched to those reactions and reagents 
that are readily available, similar to library enumeration. However, such a computational approach can 
explore a much larger space of possibilities than any semi-manual library enumeration, and the suggestion 
of a plausible synthetic scheme is a benefit, even if it cannot be guaranteed to be successful.

Structure Activity Relationships
Of course, any of these methods for compound idea generation can quickly create an overwhelmingly 
large number of potential compounds, so it is essential to prioritise those which are most likely to have the 
desired properties. This involves capturing another form of knowledge, namely the relationship between 
compounds’ structures and their activities.

Drug discovery scientists often have a good understanding of SAR within their series and the practice of 
generating quantitative structure activity relationship (QSAR) models is well established [21,22]. QSAR 
models capture statistical relationships between compounds’ structural features and their biological 
activities or ADMET properties using machine learning algorithms. Thus captured, this SAR can be readily 
applied to new compounds to predict these endpoints, guiding the design and selection of compounds. 

It is also important to recognise the limits of QSAR models; they can only make confident predictions for 
new compounds that are similar to those used to train the models. Outside of this so-called ‘domain of 
applicability’ the predictions of a model should be used with caution, because they are not supported by 
the data with which the model was built. However, recent developments in ‘active learning’ use machine 
learning methods to propose the most informative compounds for experimental investigation, such that 
the resulting data can be used to iteratively retrain a QSAR model to optimally improve its accuracy and 
expand its domain of applicability [23,24]. Active learning strategies balance exploration – selection of 
compounds with the highest information content – with exploitation – selection of compounds predicted 
to be best – to most efficiently identify the best compounds in a large chemical space [25,26].

SAR can also be captured through statistical analyses of existing compounds and data by MMPA or 
matched series analysis. These approaches look for consistent correlations in activity or property values 
between compounds that differ in only one small substitution at a single location. While these analyses 
tend to be qualitative, such consistent changes can indicate new substitutions that are likely to offer 
improvements [27,28].

Of course, where structural information is available for therapeutic and off target proteins, this can also 
be used to guide the design of new compounds, using docking or other structure based design methods, 
such as free energy perturbation [29].
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Project Objectives
The domain knowledge of multi-disciplinary experts in a project team guides the optimisation of high-
quality compounds; what are the requirements for the activity, selectivity and ADMET properties of an 
ideal compound? These can be captured as a multi-parameter profile of property criteria, as illustrated in 
the simple example in Figure 1a that combines activity against a primary target with selectivity against off 
targets and suitable physicochemical properties.

When defining such a profile, it is important to recognise that all criteria may not be equally important; it 
may be appropriate to trade off one less-important property to achieve a good outcome for a critical factor, 
such as primary activity. Furthermore, hard property cut offs may draw inappropriately harsh distinctions 
between similar compounds; for example, is the risk associated with a logP of 5.1 really different from 
that for 4.9? Both the importance of a property and more subtle relationships between property values 
and their associated risks can be captured through the use of ‘desirability functions’ as also illustrated in 
Figure 1b [30].

Our ability to discriminate between compounds is further limited by the uncertainties in all data we obtain 
in drug discovery, due to experimental variability or statistical errors in predictive models. When applying 
multi-parameter optimisation (MPO) to prioritise compounds, it is important to take these uncertainties 
into account to avoid inappropriately rejecting compounds and missing opportunities to identify a high-
quality candidate [31].

(a)

(b)

The property criteria for selection of compounds are, to some extent, subjective and different experts’ 
opinions may vary, particularly given their alternative perspectives. Therefore, it is also useful to consider 
the sensitivity of the choice of compounds to the selection criteria and their importance [32]. Sometimes, 
the selection of compounds can change significantly with only a small change in a property criterion. In 
these cases, it is important to carefully consider the choice of criterion because an inappropriate value 
may, again, result in missed opportunities.
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Figure 1; 
(a) Example of a multi-parameter optimisation scoring 
profile that balances optimising primary activity for DPP-4 
with selectivity at off-target receptors and desirable 
physicochemical properties  
(b) Desirability function for DPP-4 activity



Putting it All Together: Example application to the 
optimisation of high-quality, selective Anagliptin analogues
Computational methods to capture and apply knowledge about chemistry, SAR and the objectives of a 
project can be combined to rigorously explore optimisation strategies and suggest new compound ideas 
for expert consideration. We will illustrate this with an example application to the in silico optimisation of 
analogues of Anagliptin, by applying medicinal chemistry transformations [10], guided by QSAR models 
and MPO using the Probabilistic Scoring method [31].

Anagliptin (Figure 2a) is a member of the ‘gliptin’ family of dipeptidyl peptidase-4 (DPP-4) inhibitors. It 
has been approved in Japan since 2012 [33] for the treatment of type II diabetes mellitus. However, it 
was withdrawn from other markets due to observed animal toxicity [34], raising concerns, that have since 
been disproved, about selectivity over the DPP-2, DPP-8 and DPP-9 receptors. 

Examination of anagliptin co-crystallised in the DPP-4 binding site [35] shows the cyanomethyl pyrrolidine 
moiety binding deep in the binding pocket. Lack of differentiation between the DPP-4, DPP-2, DPP-8 
and DPP-9 binding pockets suggests that a structure-based approach to optimising selectivity would be 
challenging and hence a ligand-based approach using QSAR modelling may provide an alternative.

Capturing SAR for DPP Activities
To prioritise molecules suggested by in silico de-novo design, we need to predict potencies of the virtual 
compound ideas which are generated. Searching the ChEMBL database [2,3] enables data sets containing 
structurally diverse compounds with measured pIC50 data to be prepared, which in turn can be used to 
build QSAR models for the DPP-2, DPP-4, DPP-8 and DPP-9 receptors.

Applying multiple machine-learning approaches available in StarDrop’s Auto-Modeller™ module [36], 
QSAR models were built and validated using a variety of 2D SMARTS descriptors in addition to a range of 
whole-molecule properties. Figure 3 illustrates the validation of the models for the four receptors, which 
were built with the random forests method.

(a) (b)

(c)
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Figure 2; 
(a) Structure of Anagliptin  
(b) ChEMBL activity data for CHEMBL1929395  
(c) Predicted activities and multi-parameter 
optimisation score (0.046) for CHEMBL1929395



Capturing the MPO Objectives
As discussed previously, a successful drug candidate will possess a balance of properties in addition to 
potency. The goals for this project include:

• Good potency for DPP-4 (pIC50 > 7)

• A balance of desirable physicochemical properties typically exhibited by an orally bioavailable drug

•  Avoidance of off-target effects, including potential cardiotoxicity due to hERG inhibition, and 
selectivity over the other DPP receptors

The Probabilistic Scoring method [31] was used to score and prioritise new compound ideas from the  
de novo design process against the profile of property criteria shown in Figure 1a, to identify those with 
the highest chance of success for meeting the project’s goals.

CHEMBL1929395 (Figure 2b) a very close structural analogue of Anagliptin, but exhibits no selectivity for 
DPP-4 over DPP-8 and DPP-9. In addition to being non-selective, its predicted ADMET properties do not 
meet the desired criteria. The resulting low MPO score (0.046) makes it an ideal starting point to explore 
simultaneous, multi-parameter optimisation of potency, selectivity and ADMET.

DPP-4

DPP-8

DPP-2

DPP-9

Capturing and Applying Knowledge to Guide Compound Optimisation • Matthew Segall, Tamsin Mansley, Peter Hunt, Edmund Champness 
www.optibrium.com

Figure 3; 
Validation on 
independent test sets 
of Random Forests 
QSAR models built 
from pIC50 data in 
ChEMBL to predict 
activity of compounds 
for DPP-2, DPP-4, 
DPP-8 and DPP-9 
receptors



De-Novo Design: Guided Optimisation by Applying Captured Knowledge
Starting from CHEMBL1929395 as an initial seed and applying the transformation-based method [10] in 
StarDrop’s Nova™ module, 239 functional group and framework transformations were applied over four 
generations. During this process the cyanopyrrolidine moiety of CHEMBL 1929395, known to interact 
favourably with the protein binding site, was conserved. To prevent an exponential explosion in the 
number of ideas generated, the process was focussed by selecting the 20 highest-scoring compounds in 
each generation as the basis for the next.

Results

In total, over 16,000 compound ideas were evaluated by this process and Figure 4 illustrates the progression 
of the de novo design process from the low-scoring (0.046, coloured red) initial compound in the centre, 
CHEMBL1929395, to higher scoring ideas (~0.50, coloured yellow) in the 4th generation. The higher bars 
in the scoring histograms for the designed compounds indicate that each property’s requirements in the 
scoring profile are likely to be satisfied. 

Three representative examples of the designed compounds are highlighted, to illustrate how replacing 
the pyrazolo(1,5-a)pyrimidine heterocycle and modifying the linker can produce compounds that are 
predicted the be active at DPP-4, selective over DPP-2, DPP-8 and DPP-9 and possess the desired profile 
of physicochemical and ADMET properties. Some of the suggested compounds explore areas of chemical 
space occupied by other known DPP-4 inhibitors, whilst others lie in areas close to CHEMBL1929395 that 
were previously unexplored by compounds reported in ChEMBL.
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Figure 4; 
Output from the de novo design and multi-parameter optimisation process. Compounds are 
coloured by score with low scoring compounds coloured red and high scoring coloured yellow. 
CHEMBL1929395 and 3 representative high-scoring ideas are highlighted.



The compounds generated by this de novo design process were submitted to ICSYNTH [16], InfoChem’s 
synthesis planning tool that suggests potential routes for synthesis of a compound, together with the 
literature precedence for each putative route. Figure 5 illustrates proposed synthetic pathways for one 
of the compounds highlighted above, providing the confidence that the compounds suggested by the 
de novo design process are reasonable structures and likely to be synthesisable. The logical next step 
would be to synthesise these idea compounds to further validate the hypothesis, as has been carried out 
successfully in similar studies; one example being that of Hopkins et al [37] for the optimisation of D4 
receptor activity starting from the acetylcholinesterase inhibitor Donepezil.

Conclusions
In this short review, we have discussed a how a variety of computational approaches can capture a broad 
range of knowledge, relevant to chemistry optimisation projects, and apply these to guide the design of 
new compounds. We have illustrated how these can be seamlessly integrated to aid the exploration of a 
wide range of optimisation strategies, focussing quickly on high quality, synthetically accessible compounds 
for expert consideration.

For the foreseeable future, computational algorithms will not replace an expert medicinal chemist. 
However, an expert’s ability can be supplemented by the latest computational methods if these are made 
accessible in an intuitive way, to offer the best outcome. The expert can define and guide the overall 
strategy, while computational methods enable a rigorous tactical analysis of the available options.
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Figure 5; 
Five suggested synthetic strategies towards one of the DPP-4 virtual idea compounds, as output 
from ICSYNTH. Each ‘route’ above may require additional steps, such as use of protecting groups, 
and is supported by references to the primary literature (right).
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